

Index

01 Pars Pangan Company

03 Globe Control Valve

05 Ball Control Valve

02 Products Collection

04 Butterfly Control Valve

06 Control Valve Actuator

Appendix I. Material Selection

PARS PANGAN COMPANY

Pars Pangan was founded in 1993 as one of the subsidiaries of the Petroleum Equipment Industries Companies (PEIC). In this company, it is aimed to deliver the most reliable products with the best quality and efficiency to oil, gas, petrochemical, and power plants industries. Following the latest ideas, standards, technology, techniques, and based on prior experience in valve production, the newest types of control valves (Globe, Butterfly, and Ball) and actuators (Diaphragm, piston, scotch and Yoke) are designed and manufactured.

Pars Pangan plant is located in the Shams- Abad industrial zone in Tehran with 16,000 m² area that is including sizing, design, manufacturing, and testing department.

1- Design Department

In this department, R&D, engineering, and CFD analysis are done. The final design will be investigated according to existing standards and references.

2- Molding and Casting Unit

In this unit, according to the dimensions of the part and different casting processes, a casting mold technical drawing is prepared, and then smelting will start.

3- Machining Unit

This is the final stage of production which includes all kinds of manual and CNC lathes, milling, and drills. According to the final technical drawing, parts will be machined and prepared.

4- Test Unit

In this unit, the performance and leakage of valves based on different procedures and standards are evaluated. To do the measurement, high-precision equipment will be used.

Products Collection

Pars pangan company is capable of manufacturing various types Of control valve and their actuators. The main products include Globe control valve, Butterfly control valve, Ball control valve, and linear and rotary actuators. Beside standard sizes and characteristics. the customer requirements can also be considered in design and manufacturing steps. It does not end here and we are developing our products without any limitation.

Size:1-16 inch

Globe Valve Material: Carbon Steel (A216 WCB, A352 LCC, & A217 WC6)/ Stainless Steel (A351 CF8M & A351 CF3M)/ A105/ A182/ F316/ F304/ NACE material on

Butterfly Valve Material: Carbon Steel (A216 WCB, A352 LCC, & A217 WC6)/ Stainless Steel (A351 CF8M & A351 CF3M)/ A105/ A182/ F316/ F304/ NACE material on request

Example 1: Globe valve- Contoured plug - Equal Percent- Fail to close- 6 inch valve- Standard bonnet

G-012106S

Example 2: Butterfly valve- Double offset - Linear- Fail to close- 20 inch valve- Standard bonnet

T- 21 1 1 20 S

Control Valve Specification

					Gloł	be Con	trol Va	lve							
						Va	alve Siz	ze (incl	1)						
Model	Description	1	1 1/2	2	3	4	6	8	10	12	14	16	FL	XT	
		Flow Coefficient (Cv)- (min. and max.)													
01	Contoured	13	33	52	118	209	472	839	1311	1888	2570	3357	0.84	0.71	
01	Plug	0.5	1.2	13	29	52	118	209	327	472	642	839	0.84	0.72	
02	Top Guided	12	31	48	109	195	439	780	1219	1756	2390	3122	0.80	0.72	
02	Plug	0.4	1.6	12	27	48	109	195	304	439	597	780	0.83	0.74	
	High-Capacity				111	140	447	530	1050	1491	2100	2900	0.85	0.75	
05	Cage				27	49	111	199	310.9	447	609	796	0.80	0.71	
04	Low Noise	7.4	17	28	63	112	253	449	703	1012	1378	1799	0.84	0.75	
04	Cage	0.2	0.9	7	15	28	63	112	175	253	344	449	0.82	0.75	
05	High Pressure	11	28	44	100	130	401	520					0.82	0.71	
05	Low Noise Cage	0.4	1.5	11	25	44	100	178					0.79	0.70	
06	Malti Gta				55	70	223	265	525	745	1050	1450	0.00	0.02	
	Multi Stage				13	24	55	99	155	223	304	398	0.96	0.92	

	Butterfly Valve															
		Flow Coefficient (Cv)														
Model	Description	Valve Size (inch)												F_{L}	XT	
	*	3	4	6	8	10	12	14	16	18	20	24	28	32		
21	Double Offset	370	578	1387	2659	4162	6011	8439	10982	13872	17109	24970	34911	46471	0.65	0.35
22	Triple Offset			1470	2615	4567	6578	8953	11694	14800	18272	29417	40039	52296	0.65	0.35

	Ball Valve													
	Description	Flow Coefficient (Cv)												
Model			Valve Size (inch)											
	– <u>r</u>	1	1 1⁄2	2	3	4	6	8	10	12	14	16		
41	V-Notch	otch 35 65 104 266 447 1116 1		1811	2774	4508	7109	11329	0.66	0.32				

Common values of C_v and value size are introduced in upper tables. For larger/ smaller values, special design will be done.

Globe Control Valve

The contoured plug is used in the majority of applications. This trim is suitable for low-pressure drop and high-capacity applications in both gas and fluid medium. It has a particular profile plug head, which offers a smooth profile to the flow and permits high-pressure recovery.

1	Туре	Unbalanced Contoured Plug Type
2	Body Size	1"-16"
3	Plug Form	Contoured
4	Inherent Characteristic	Linear/Equal percent/ Quick opening/ Modified
5	Pressure Rating	150-600 up to 900
6	Body End Connection	RF, FF, SW, BW, Screwed, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

G02. Top Guided Plug

The top Guided plug is one of the most used trims in control valves. This trim is appropriate for high pressure drop and low flow coefficient compared to a contoured plug.

1	Туре	Top guided Plug Type
2	Body Size	1"-16"
3	Plug Form	Contoured/ Parabolic
4	Inherent Characteristic	Linear/Equal percent/ Quick opening/ Modified
5	Pressure Rating	150-600 up to 900
6	Body End Connection	RF, FF, SW, BW, Screwed, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

High-capacity cage globe control valves are designed for critical service process control requirements of a diverse range of applications. This kind of trim is appropriate for applications that require high controllability.

1	Туре	High-capacity cage
2	Body Size	3"-16"
3	Plug Form	Perforated single plug/ Contoured
4	Inherent Characteristic	Linear/Equal percent/ Quick opening/ Modified
5	Pressure Rating	150-600 up to 900 by request
6	Body End Connection	RF, FF, SW, BW, Screwed, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

G04. Low Noise Cage

Low noise cage is designed for noise reduction of a compressible gas. It has the advantage of the negligible loss of pressure drop and low noise. It can be especially applicable in severe gas service with high-pressure drop.

1	Туре	Low noise cage
2	Body Size	1"-16"
3	Plug Form	Perforated single plug
4	Inherent Characteristic	Linear/Equal percent
5	Pressure Rating	150-600 up to 900 by request
6	Body End Connection	RF, FF, SW, BW, Screwed, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

G05. High pressure- Low Noise Cage

High pressure- low noise cage is specially designed to reduce the noise of compressible fluid. Beside the low noise cage, it also features slight loss of pressure drop. It is suitable for services such as high- pressure air and steam.

1	Туре	High pressure- low noise cage
2	Body Size	1"-8"
3	Plug Form	Perforated single plug
4	Inherent Characteristic	Linear/Equal percent
5	Pressure Rating	900 & 1500
6	Body End Connection	RF, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

G06. Multistage

 \mathbf{M} ulti-stage trims can help in the management of high-pressure drops and avoid cavitation and choking. The range includes various options offering up to 30 pressure drop stages and the ability to manage high levels of rangeability.

1	Туре	Multi stage
2	Body Size	1"-16"
3	Plug Form	Perforated single plug/ Contoured
4	Inherent Characteristic	Linear/Equal percent/ Quick opening/ Modified
5	Pressure Rating	150-600 up to 900 by request
6	Body End Connection	RF, FF, SW, BW, Screwed, RTJ
7	Bonnet Type	Standard/ Extended T < - 6 (°C)/ Finned Extended T > 250 (°C)
8	Face To Face Dimension	ISA 75.08/ IEC 60534-3

Globe Valve Dimension

Vales Cies		Dimension (mm)												
Valve Size	Pressure Rating	т		H1	110									
(inch)		L	Standard	Extended/Finned	H2									
	150	184		·										
1	300	197	105	167	57.5									
	600	210												
	150	222												
1 1/2	300	235	114	170	75									
	600	251												
	150	254												
2	300	267	120	180	82.5									
	600	286												
	150	298												
3	300	318	156	248	100									
	600	337												
	150	352												
4	300	368	181	267	118									
	600	394												
	150	451												
6	300	473	260	355	175									
	600	508												
	150	543												
8	300	568	292	407	230									
	600	610												
	150	673												
10	300	708	357	506	295									
	600	752												
	150	737												
12	300	775	394	543	355									
	600	819												
	150	889												
14	300	927	462	611	395									
	600	972]											
	150	1016												
16	300	1057	518	667	443									
	600	1108												

Rate Flow (m) Max Funct Confinient (C) Funct Confinient (C) Standard Linear Characteristic Standard Linear Charac
Rated Flow, (Winu) Max (Cy); (Winu) Flow Coefficient (Struck (Winu) 2 3 1 5 3 4.1 5.3 5.3 3.4.1 4.9 5.6 4.1.7 13 0.1 3 3 7 0 13 0.3 5.3 5.4 4.9 5.6 6.3 7 0.0 0.1 13 0.1 13 0.1 13 0.1 13 0.1 13 0.1 13 0.1 13 0.1 13 0.1 13 13 <
Seat Size (mm) Rated Flow (Cv) Max Stroke 25 13 Cv) mm) 25 13 Stroke mm) 20 8 14 14 15 4 1 14 20 8 14 16 10 1.2 33 16 20 7 1 16 10 1.2 33 16 20 7 1 16 10 1.2 33 16 50 52 25 25 50 52 13 50 50 52 118 50 50 52 329 100 100 209 839 100 150 472 85 100 150 1300 1311 120 150 150 472 85 150 150 1445 160 150<

G01. Contoured Plug Flow Coefficient

			100	12	8	4	0.40	31	17	9	7	48	27	12	109	61	27	195	109	48	439	258	109	780	439	195	1219	704	304	1756	987	439	2390	1344	597	3122	1756	780
			90	8.1	5.4	2.7	0.27	20.9	11.5	4.1	1.1	32.4	18.2	8.1	73.7	46	18.2	146	73.7	32.4	296.7	174.3	73.7	527.1	296.7	132	823.8	475.7	205.4	1186.6	667	296.7	1615.1	908.2	403	2109.7	1186.6	527.1
	istic		80	5.5	3.7	1.8	0.18	16	7.8	2.7	0.7	21.9	12.3	5.5	49.8	28	12.3	0.68	49.8	21.9	200.4	117.8	49.8	356.1	200.4	89.0	556.5	321.4	138.8	801.6	450.6	200.4	1091.0	613.5	272.5	1425.2	801.6	356.1
	Character		70	3.7	2.5	1.2	0.12	9.6	5.3	1.9	0.5	14.9	8.4	3.7	33.8	18.9	8.4	60.4	33.8	14.9	136.0	79.9	33.8	241.6	136.0	60.4	377.6	218.1	94.2	544	305.7	136.0	740.3	416.3	184.9	967	544	241.6
	rcentage (vel (%)	60	2.5	1.7	1	0.08	6.5	4	1.3	0.3	10.0	5.6	2.5	22.8	12.7	5.6	40.7	22.8	10.0	91.7	53.9	22.8	162.8	91.7	40.7	254.5	147.0	63.5	366.6	206.1	91.7	499.0	280.6	124.6	651.8	366.6	162.8
	Equal Pe	Tra	50	1.7	1.1	0.6	0.06	4.3	2.4	0.8	0.26	6.7	3.8	2.0	15.3	8.6	3.8	27.4	15.3	6.7	61.6	36.2	15.3	109.4	61.6	27.4	171.0	98.7	42.6	246.3	138.4	61.6	335.2	188.5	84	437.9	246.3	109.4
	Standard		40	1.2	0.8	0.4	0.04	3.0	1.6	0.6	0.2	4.6	2.6	1.2	10.5	5.9	2.6	18.8	10.5	4.6	47	24.9	10.5	75.3	42	18.8	117.7	68.0	29.4	170	95.3	42	230.8	130	58	301.5	170	75.3
			30	0.8	0.5	0.3	0.03	2.0	1.1	0.4	0.15	3.1	1.7	0.8	7.0	3.9	1.7	12.5	7.0	3.1	28.2	16.6	7.0	50.2	28.2	12.5	78	45.3	19.6	112.9	63.5	28.2	153.7	86.4	38.4	200.8	112.9	50.2
(20	0.5	0.3	0.2	0.02	1.3	0.7	0.3	0.1	2.1	1.2	0.5	4.7	б	1.2	8.5	4.7	2.1	19.1	11.2	4.7	33.9	19.1	8.5	53.0	31	13.2	76.4	42.9	19.1	104	58.5	26.0	136	76.4	33.9
tient (CV			10	0.4	0.2	0.1	0.01	0.9	0.5	0.2	0.02	1.5	0.8	0.4	3.3	1.9	0.8	5.9	3.3	1.5	13.3	7.8	3.3	23.7	13.3	5.9	37	21.4	9.2	53.3	29.9	13.3	72.5	40.8	18.1	95	53.3	23.7
w Coeffic			100	12	8	4	0.40	31	17	9	7	48	27	12	109	61	27	195	109	48	439	258	109	780	439	195	1219	704	304	1756	987	439	2390	1344	597	3122	1756	780
Flov			90	10.8	7.2	3.6	0.36	27.9	15.3	5.4	1.4	43.2	24	10.8	98.2	55.0	24	175.7	98.2	43.2	395.5	232.4	98.2	702.7	395.5	175.7	1098.3	634.3	273.9	1582.1	889.2	395.5	2153.3	1210.9	537.9	2812.8	1582.1	702.7
			80	9.6	6.4	ю	0.32	24.9	13.6	4.8	1.3	38.5	21.7	9.6	87.4	48.9	21.7	156.4	87.4	38.5	352.0	206.9	87.4	625.5	352.0	156.4	977.5	564.5	244	1408.2	791.5	352.0	1916.6	1077.8	478.7	2503.6	1408.2	625.5
	ristic		70	8.5	5.6	2.8	0.28	21.8	12.0	4.2	1.1	33.8	19.0	8.5	76.8	43.0	19.0	137.4	LL	33.8	309.4	181.8	LL	549.7	309.4	137.4	859.1	496.2	214.2	1237.6	695.6	309.4	1684.4	947.2	420.7	2200.3	1237.6	549.7
	Characte	(0)	60	7.3	4.9	2.4	0.24	18.8	10.3	3.6	1.0	29.2	16.4	7.3	66.2	37.1	16.4	118.5	66.2	29.2	266.8	156.8	66.2	474.0	266.8	118.5	740.7	427.8	184.7	1067.0	599.7	266.8	1452.2	817	362.8	1897	1067.0	474.0
	rd Linear	Travel	50	6.1	4.1	2.1	0.20	15.8	8.6	3.1	0.9	24.4	13.7	6.1	55.4	31.0	13.7	99.2	55	24.4	223.3	131.2	55	396.7	223.3	99.2	620.0	358.0	154.6	893.1	502.0	223.3	215.5	683.5	303.6	587.8	893.1	396.7
	Standa		40	4.9	3.3	1.7	0.16	2.7	7.0	2.5	0.7	9.7	1.1	4.9	45	5.0	1.1	6.6	45	9.7	79.8	05.7	45	19.4	79.8	9.6	99.2 (88.3	24.5	19.2	04.2	79.8	78.8 1	50.4	44.5	18.6 1	19.2	19.4
			30	8.	.5	e.	.13 0	10 1	ć.	6.	.5 (5.1 1	.5 1	8.	4.3	9.2 2	.5 1	1.3 7	4.3	5.1 1	8.0 1	1.1 1(4.3	5.2 3.	8.0 1	1.3 7	3.1 49	1.3 28	5.6 12	52 7	0.2 4(8.0 1	1.2 9'	2.4 55	7.6 24	1.3 12	52 7	5.2 3
			50	3	.7	.9 1	0 60	5.7	5.7 5	.3	.3 (0.3 1	8.8	с, С	3.5 3.	3.1 1	8.8	2.0 6	3.5 3.	0.3 1:	4.5 13	5.5 8	3.5 3.	57.9 24	4.5 13	2.0 6	62 38	1.5 22	5.4 9.	8.0 5	2.5 31	4.5 13	4.5 75	89 42	8.5 18	2.1 98	8.0 5	57.9 24
			0	4.	.0	.5 (05 0	.7	0.0	1 1.	.2	.7 1	.2	4.	2.9 2	7 1	5	3.0 4	2.9 2	.7 1	9 9	0.5 5	2.9 2	2.1 16	9 9.	3.0 4	4.0 2	3.2 15	5.9 6	07 37	6.6 21	9 9	82 51	8.8 2	0.5 12	8.8 67	7.4 37	2.1 16
	aX A			_		+	0			<u> </u>		43	<u>s</u>		1	2	(1)	2	0	4,	S	5	-	6	0 5	2	17	8	3	5	0	5	5	0 15	-	36	0 2(6
;	v Mi				-	-				-			6		-	č			5			òó			10			12			16		-	18			20	
ļ	Rated Flow			12	8	4	0.4	31	17	9	1.6	48	27	12	109	61	27	195	109	48	439	258	109	780	439	195	1219	704	304	1756	987	439	2390	1344	597	3122	1756	780
	Seat Size	(mm)		25	20	15	5	40	30	20	10	50	38	25	80	60	40	100	75	50	150	115	75	200	150	100	250	190	125	300	225	150	350	265	175	400	300	200
	Valve	(inch)			-	-			1 12	1 72			2			б			4			9			~			10			12			14			16	

G02. Top Guided Plug Flow Coefficient

	-1 R					2																	
1X		Rated										Flow	Coefficie	ıt (CV)									
valve Size	Seat Size	Flow	Stroke				Stan	dard Line	ar Charact	eristic						Sta	ndard Eq	ual Percei	ntage Cha	aracteristi	ic.		
(inch)	(mm)	Coefficient	(mm)					Trav	el (%)									Travel	(%)				
		(1)		10	20	30	40	50	60	70	80	90	100	10	20	30	40	50	60	70	80	90	100
	80	111		13.1	24	34.9	45.5	56.5	67.4	78.2	89.0	100.0	111	3.4	4.8	7.1	10.7	15.6	23.2 3	34.4	50.7	75.0	111
б	09	62	35	7.3	13.3	19.5	25.4	31.5	37.7	43.7	49.7	55.9	62	1.9	2.7	4.0	6.0	8.7	12.9 1	19.2	28.3	41.9	62
	40	27		3.2	5.8	8.5	11	13.7	16	19.0	22	24.3	27	0.8	1.2	1.7	2.6	3.8	9	8.4	12.3	18.2	27
	100	199		16.54	30.14	44.00	57.34	71.20	85.07	98.67	112.27	126.13	140.00	4.25	6.09	9.00	13.52	19.64 2	9.23 4	3.36 (53.91	94.61	140
4	75	111	50	13.1	23.9	35	45.5	56.5	67.4	78.2	89.0	100.0	111	3.4	4.8	7.1	10.7	15.6	23.2 3	34.4	16	75.0	111
	50	49		5.8	10.5	15.4	20.1	24.9	29.8	34.5	39.3	44.1	49	1.5	2.1	3.2	4.7	6.9	10 1	15.2	22.4	33.1	49
	150	447		52.8	96.2	140.5	183.1	227.3	271.6	315.0	358.5	402.7	447	13.6	19.4	28.7	43.2	62.7	93.3 1	38.5	204.1	302.1	447
9	115	263	85	31.1	56.6	82.7	107.7	134	159.8	185.4	210.9	237.0	263	8.0	11.4	16.9	25.4	36.9	54.9 8	81.5	120.1	177.7	263
	75	111		13.1	23.9	34.9	45.5	56.5	67.4	78.2	89.0	100.0	111	3.4	4.8	7.1	10.7	15.6	23.2 3	34.4	50.7	75.0	111
	200	796		62.6	114.1	166.6	217.1	269.6	322.0	373.5	425.0	478	530	16.1	23.1	34.1	51.2	74.3 1	10.7 1	64.2 2	241.9	358.2	530
~	150	447	100	52.8	96	140.5	183.1	227.3	271.6	315.0	358.5	402.7	447	13.6	19.4	28.7	43.2	2.0	93.3 1	38.5 2	204.1	302.1	447
	100	199		23.5	42.8	62.5	81	101.2	120.9	140.2	159.6	179.3	199	6.0	8.7	12.8	19.2	27.9	41.5 (51.6	90.8	134.5	199
	250	1243		124	226.0	330.0	430.0	534.0	638.0	740.0	842.0	946.0	1050	31.9	46	67.5	101.4	147.3 2	19.2 3	25.2	479	46	1050
10	190	718.5	120	84.9	154.7	225.8	294.3	365.4	436.6	506.4	576.2	647	719	21.8	31.3	46.2	69.4	00.8 1	50.0 2	22.5 3	328.0	485.5	719
	125	310.9		36.7	6.99	97.7	127.3	158.1	188.9	219.1	249.3	280.1	311	9.4	13.5	20.0	30.0	43.6	54.9 9	96.3	141.9	146	311
	300	1791		176.1	321.0	468.6	611	758	906.0	1051	1195.6	1343.3	1491	45.2	64.9	95.9	144.0	209.1 3	11.3 4	61.8 (580.6	007.6	1491
12	225	1007	160	119.0	216.8	316.5	412.4	512.1	611.9	709.7	807.5	907.3	1007	30.6	43.8	64.8	97.2	141.2 2	10.2 3	11.9 4	159.7	580.5	1007
	150	447		52.8	96.2	140.5	183.1	227.3	271.6	315.0	358.5	402.7	447	13.6	19.4	28.7	47	62.7	93.3 1	38.5 2	204.1	302.1	447
	350	2438		248.1	452.1	660.1	860.0	1068.0	1276.0	1480.0	1684.0	1892.0	2100	63.7	91.4	135.1	202.8	294.6 4	38.4 6	50.4 9	928.6	419.1	2100
14	265	1371	180	162.0	295.1	430.9	561	697	833.1	996	1099.4	1235.2	1371	41.6	59.7	88.2	132.4	92.3 2	86.2 4	24.6 (525.8	926.5	1371
	175	609		71.9	131.1	191.4	249.4	309.7	370.0	429.2	488.4	548.7	609	18.5	26.5	39.2	58.8	85.4 1	27.1 1	88.6 2	278.0	411.5	609
	400	3184		342.6	624.3	911.5	1187.7	1474.9	1762.1	2043.8	2325.5	2612.8	2900	88.0	126.2	186.5	280 4	406.8 6	05.5 8	98.2 1	323.8	959.7	2900
16	300	1791	200	211.6	385.5	562.9	733.5	910.9	1088.3	1262.2	1436.2	1613.6	1791	54.3	77.9	115.2	172.9	251.2 3	73.9 5	54.7 8	817.6	1210	1791
	200	796		94	171	250.2	326.0	404.8	483.7	561.0	638.3	717.2	796	24	34.6	51	76.9	111.7 1	66.2 2	46.5 3	363.4	537.9	796

G03. High- Capacity Cage Flow Coefficient

											Flow	Coefficie	nt (Cv)									
Valve	Rated Flow	Max				Stan	dard Line	ur Characte	eristic						Sta	ndard Equ	al Percenta	ige Characi	teristic			
SIZe (inch)	Coefficient	Stroke					Trav	el (%)									Travel (⁰	(0)				
			10	20	30	40	50	60	70	80	90	100	10	20	30	40	50 0	0 20)8()6 (100	
	7.4		0.9	2	2.3	3.0	3.8	4.5	5.2	5.9	6.7	7	0.2	0.3	0.5	0.7	1.0 1	.5 2.3	3.3.	4 5.(7	
-	4	1	0.5	0.9	1.3	1.6	2.0	2.4	2.8	3.2	3.6	4	0.1	0.2	0.3	0.4	0.6 0	.8 1.	2	8 2.3	4	
-	2.6	ţ	0.3	0.6	0.8	1	1.3	1.6	1.8	2	2.3	Э	0.1	0.15	0.2	0.3	0.4	1 0.3	8	2 1.8	3	
	0.2		0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.01 (0.015 0	.018 ().02 (.03 0.	04 0.0	6 0.0	9 0.1	4 0.20	0
	17		2.0	3.7	5	7.0	8.6	10.3	12.0	13.6	15.3	17	0.5	0.7	1.1	1.6	2.4 3	.5 5.	3 16	i 11.	5 17	
1 12	10	16	1.2	2.2	3.1	4.1	5.1	6.1	7.0	8.0	9.0	10	0.3	0.4	0.6	1.0	1.4	2 3.	1 4.	5 6.8	10	
1 %2	4	10	0.5	0.9	1.3	1.6	2.0	2.4	2.8	3.2	3.6	4	0.1	0.2	0.3	0.4	0.6 0	.8 1.5	2	3.2.3	4	
	0.9		0.1	0.2	0.3	0.4	0.45	0.5	0.6	0.7	0.8	1	0.02	0.03	0.04).07 (.11 0	.2 0.	3 0.4	4 0.6	1	
	28		3.3	6.0	8.8	11.5	14.2	17.0	19.7	22.5	25.2	28	0.8	1.2	1.8	2.7	3.9 5	.8 8.	7 12.	8 18.	9 28	
2	15	25	1.8	3.2	4.7	6.1	7.6	9.1	10.6	12.0	14	15	0.5	0.7	1.0	1.4	2.1 3	.1 4.0	6.	8 10.	1 15	
	7		0.8	2	2.2	2.9	3.6	4.3	4.9	5.6	6.3	7	0.2	0.3	0.5	0.7	1.5	2 2.5	2	4	. 7	
	63		7.4	13.6	19.8	26	32.0	38.3	44.4	50.5	56.8	63	1.9	2.7	4.1	6.1	8.8 1.	3.2 19.	5 28.	8 42.	5 63	
3	35	35	4	7.5	11.0	14.3	17.8	21.3	24.7	28.1	31.5	35	1.1	2	2.3	3.4	4.9 7	.3 10.	8 16	46	35	
	15		1.8	3.2	4.7	6.1	7.6	9.1	10.6	12.0	14	15	0.5	0.7	1.0	1.4	2.1 3	.1 4.0	6.9	3 10.	1 15	
	112		13.2	24.1	35.2	45.9	57.0	68.1	78.9	89.8	100.9	112	3.4	4.9	7.2	10.8	5.7 2.	3.4 34.	7 51.	1 14	5 112	
4	63	50	7.4	13.6	19.8	26	32	38.3	44	50.5	56.8	63	1.9	2.7	4.1	6.1	8.8 1.	3.2 19.	5 28.	8 42.	5 63	
	28		3.3	6.0	8.8	11.5	14.2	17.0	19.7	22.5	25.2	28	0.8	1.2	1.8	2.7	3.9 5	.8 8.	7 12	8 18.	9 28	
	253		29.9	54.5	79.5	103.6	128.7	153.7	178.3	202.9	227.9	253	7.7	11.0	16.3	47	15.5 52	2.8 78.	4 115	.5 171	0 253	~
9	148	85	17.5	31.9	46.5	60.6	75.3	89.9	104.3	118.7	133.3	148	4.5	6.4	9.5	14.3	20.8 3(.9 45.	8 67.	6 100	.0 148	~
	63		7.4	13.6	19.8	26	32	38.3	44	50.5	56.8	63	1.9	2.7	4.1	6.1	8.8 1.	3.2 19.	5 28.	8 42.	5 63	
	449		53.0	96.7	141.1	183.9	228.4	272.8	316.4	360.1	404.5	449	13.6	19.5	28.9 ,	43.4 (53.0 93	3.7 139	.1 205	.0 303	4 449	
∞	253	100	29.9	54.5	79.5	103.6	128.7	153.7	178.3	202.9	227.9	253	7.7	11.0	16.3	24	35.5 52	2.8 78.	4 115	.5 171	0 253	~
	112		13.2	24.1	35.2	45.9	57.0	68.1	78.9	89.8	100.9	112	3.4	4.9	7.2	10.8	5.7 2.	3.4 34.	7 51.	1 76	112	~
	703		83.0	151	221.0	287.9	357.5	427.2	495.5	563.7	633.4	703	21	30.6	45 (6.7.9	9.6 14	6.8 217	.7 320	.9 475	.1 703	~
10	406	120	48.0	87.4	127.6	166.3	206.5	246.7	286.1	325.6	365.8	406	12.3	18	26.1	39.2	6.9 8	4.8 125	.8 185	.3 274	4 406	
	175			20.7	37.71	71.7	89.0	106.3	123.3	140	157.7	175	5.3	7.6	11.3	16.9	24.5 30	5.5 54.	2 79.	9 118	.3 175	
	1012		120	217.8	318	414.5	514.7	614.9	713.2	811.5	911.8	1012	30.7	44.0	65.1	98 1	42.0 21	1.3 31	3 462	.0 683	9 1012	5
12	569	160	67.2	122.5	178.8	233.0	289.4	345.7	401.0	456.3	512.6	569	17.3	24.8	36.6	54.9	79.8 11	8.8 176	.2 259	.7 38	569	~
	253		29.9	54.5	79.5	103.6	128.7	153.7	178.3	202.9	227.9	253	7.7	11.0	16.3	24	35.5 52	2.8 78.	4 115	.5 171	.0 253	~
	1378		163	296.6	433.1	564.3	700.8	837.3	971.2	1105.0	1241.5	1378	41.8	60.0	88.6 1	33.1 1	93.3 28	7.7 426	.8 629	.0 931	2 1378	~
14	775	180	91.6	167	243.6	317.4	394.2	471	546.2	621.5	698.2	775	23.5	33.7	49.8	75 1	08.7 16	1.8 240	.0 353	.8 523	T 775	
	344		40.6	74.1	108.1	140.9	175.0	209.0	242.4	275.9	309.9	344	10.4	15.0	22.1	33	48 7	1.8 106	.5 157	.0 23	344	+
	1799		212.5	387.3	565.4	736.8	914.9	1093	1267.9	1442.6	1620.8	1799	55	78.3 1	15.7 1	73.7 2	52.3 37	5.6 55	7 821	.2 1215	2671 1799	6
16	1012	200	119.5	217.8	318	414.5	514.7	614.9	713.2	811.5	911.8	1012	30.7	44.0	65.1	98 1	42.0 21	1.3 31	3 462	.0 683	9 1012	2
	449		53.0	96.7	141.1	183.9	228.4	272.8	316.4	360.1	404.5	449	13.6	19.5	28.9	13.4	53.0 9	3.7 139	1 205	.0 303	4 449	_

G04. Low Noise Cage Flow Coefficient

								_												_					_		
				100	11	7	4	0.4(28	16	9	7	44	25	11	100	56	25	130	100	44	401	235	100	520	401	178
				90	7.4	4.7	2.7	0.27	18.9	10.8	4.2	1.0	29.7	16.9	7.4	67.6	46	16.9	146	67.6	29.7	271.0	158.8	67.6	351.4	271.0	120
		stic		80	5.0	3.2	1.8	0.18	16	7.3	2.8	0.7	20.1	11.4	5.0	45.6	26	11.4	59.3	45.6	20.1	183.1	107.3	45.6	237.4	183.1	813
		haracteris		70	3.4	2.2	1.2	0.12	8.7	5.0	1.9	0.5	13.6	7.7	3.4	31.0	17.3	7.7	40.3	31.0	13.6	124.2	72.8	31.0	161.1	124.2	55.1
		centage C	vel (%)	60	2.3	1.5	1	0.08	5.8	ŝ	1.3	0.3	9.2	5.2	2.3	20.9	11.7	5.2	27.1	20.9	9.2	83.7	49.1	20.9	108.6	83.7	37.2
		Equal Per	Tra	50	1.5	1.0	0.6	0.06	3.9	2.2	0.9	0.2	6.2	3.5	2.0	14.0	7.9	3.5	18.2	14.0	6.2	56.2	33.0	14.0	72.9	56.2	25.0
		andard E		40	1.1	0.7	0.4	0.04	2.7	1.5	0.6	0.15	4.2	2.4	1.1	9.7	5.4	2.4	12.6	9.7	4.2	47	22.7	9.7	50.2	39	17.2
		St		30	0.7	0.5	0.3	0.03	1.8	1.0	0.4	0.1	2.8	1.6	0.7	6.4	3.6	1.6	8.4	6.4	2.8	25.8	15.1	6.4	33.4	25.8	11.4
				20	0.5	0.3	0.2	0.02	1.2	0.7	0.3	.08	1.9	1.1	0.5	4.4	7	1.1	5.7	4.4	1.9	17.4	10.2	4.4	22.6	17.4	7.7
	nt (Cv)			10	0.3	0.2	0.1	0.01 (0.8	0.5	0.2	0.02 (1.3	0.8	0.3	3.0	1.7	0.8	3.9	3.0	1.3	12.2	7.1 1	3.0	15.8 2	12.2	5.4
	Coefficie			100	11	7	4	0.40	28	16	9	5	44	25	11	100	56	25	130	100	44	401	235	100	520	401	178
	Flow (90	9.6	6.3	3.6).36 (25.2	14.4	5.6	1.4	39.6	23	9.9	90.1	50.5	23	17.1	90.1	39.6	61.3	11.7	€0.1	68.5	61.3	60.4
				80	8.8	5.6	3	.32	2.5	2.8	5.0	1.2	5.3	0.0	3.8	0.2	4.9	0.0	04.2 1	0.2	5.3	21.6 3	88.4 2	0.2	17.0 4	21.6 3	42.7
				0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	8	28 0	.7 2	.3 1	4		.0 3	.6 2	8	.5 8	5.	.6 2	.6 1(0	.0 3	2.6 32	5.6 18	0 8	5.5 4	2.6 32	5.4 1
		acteristic		70	7.	4	5.	0.2	19	11	4	1.	7 31	17	7.	5 70	39	17	91	7	31	7 282	8 165	7	0 366	7 282	2 125
-		ear Chara	vel (%)	60	6.7	4.3	2.3	0.24	17.0	9.7	3.8	0.9	26.7	15.2	6.7	8.09	34.0	15.2	0.07	8.09	26.7	243.	142.	60.8	316.	243.	108.
		dard Line	Tra	50	5.6	3.6	2.1	0.20	14.2	8.1	3.2	-	22.4	12.7	5.6	50.9	28.5	12.7	66.1	51	22.4	203.9	119.5	51	264.5	203.9	90.5
		Stan		40	4.5	2.9	1.7	0.16	11.5	6.6	2.5	0.6	18.0	10.2	4.5	41	22.9	10.2	53.2	41	18.0	164.2	96.2	41	213.0	164.2	72.9
				30	3.5	2.2	1.3	0.13	6	5.0	1.9	0.5	13.8	7.9	3.5	31.4	17.6	7.9	40.9	31.4	13.8	126.0	73.9	31.4	163.4	126.0	55.9
אר אר אר				20	2	1.5	0.9	0.09	6.0	3.4	1.3	0.3	9.5	5.4	2	21.5	12.1	5.4	28.0	21.5	9.5	86.3	50.6	21.5	111.9	86.3	38.3
				10	1.3	0.8	0.5	0.05	3.3	1.9	0.7	0.2	5.2	3.0	1.3	11.8	7	3.0	15.4	11.8	5.2	47.4	27.8	11.8	61.4	47.4	21.0
	Max	Stroke				14				16	10			25			35			50			85		0	100	
	Rated Flow	Coefficient	(A)		11	7	4	0.4	28	16	6.2	1.5	44	25	11	100	56	25	130	100	44	401	235	100	520	401	178
	Valve	Size	(incn)			1				1	1 72			2			З			4			9		c	×	

G05. High Pressure Low Noise Cage Flow Coefficient

		a																					
Valva		Dated Flow	May									Flow	Coefficie	nt (Cv)									
Size	Seat Size	Coefficient	Stroke				Stand	lard Line	ar Charac	teristic						Sta	ndard Eq	ual Perce	ntage Cha	rracterist	ic		
(inch)	(mm)	(Cv)	(mm)					Trav	rel (%)									Travel	(%)				
				10	20	30	40	50	60	70	80	90	100	10	20	30	40	50	60	70	80	90	100
	80	55		6.5	12	17.3	22.5	28.0	33.4	38.8	44.1	49.6	55	1.7	2.4	3.5	5.3	7.7	11.5 1	7.0	25.1	\$7.2	55
m	60	31	35	3.7	6.7	9.7	12.7	15.8	18.8	21.8	24.9	27.9	31	0.9	1.3	2.0	3.0	4.3	6.5	9.6	14.2	20.9	31
	40	13		1.5	2.8	4.1	5	6.6	8	9.2	10	11.7	13	0.4	0.6	0.8	1.3	1.8	3 4	4.0	5.9	8.8	13
	100	70		8.27	15.07	22.00	28.67	35.60	42.53	49.33	56.13	63.07	70.00	2.12	3.05	4.50	5.76	9.82 1	4.62 2	1.68 3	1.95 4	7.30 7	0.00'
4	75	55	50	6.5	11.8	17	22.5	28.0	33.4	38.8	44.1	49.6	55	1.7	2.4	3.5	5.3	7.7	11.5 1	7.0	16	87.2	55
	50	24		2.8	5.2	7.5	9.8	12.2	14.6	16.9	19.2	21.6	24	0.7	1.0	1.5	2.3	3.4	5	7.4	1.0	6.2	24
	150	223		26.3	48.0	70.1	91.3	113.4	135.5	157.2	178.8	200.9	223	6.8	9.7	14.3	21.5	31.3 4	46.6 6	9.1 1	01.8 1	50.7	223
9	115	131	85	15.5	28.2	41.2	53.6	67	79.6	92.3	105.1	118.0	131	4.0	5.7	8.4	12.6	18.4	27.4 4	0.6	59.8	38.5	131
	75	55		6.5	11.8	17.3	22.5	28.0	33.4	38.8	44.1	49.6	55	1.7	2.4	3.5	5.3	7.7	11.5 1	7.0	25.1	37.2	55
	200	265		31.3	57.0	83.3	108.5	134.8	161.0	186.8	212.5	239	265	8.0	11.5	17.0	25.6	37.2	55.3 8	2.1 1	21.0 1	79.1	265
×	150	223	100	26.3	48	70.1	91.3	113.4	135.5	157.2	178.8	200.9	223	6.8	9.7	14.3	21.5	30.5 4	46.6 6	9.1 1	01.8 1	50.7	223
	100	66		11.7	21.3	31.1	41	50.4	60.2	69.8	79.4	89.2	99	3.0	4.3	6.4	9.6	13.9	20.7 3	0.7	15.2	6.9	99
	250	525		62	113.0	165.0	215.0	267.0	319.0	370.0	421.0	473.0	525	15.9	23	33.8	50.7	73.6 1	09.6 10	52.6	240	460	525
10	190	359	120	42.4	77.3	112.8	147.0	182.6	218.1	253.0	287.9	323	359	10.9	15.6	23.1	34.7	50.4 '	75.0 1	11.2 1	63.9 2	42.6	359
	125	155		18.3	33.4	48.7	63.5	78.8	94.2	109.2	124.3	139.6	155	4.7	6.7	10.0	15.0	21.7	32.4 4	.8.0	70.8	146	155
	300	745		88.0	160.4	234.2	305	379	452.7	525	597.4	671.2	745	22.6	32.4	47.9	1.9 1	04.5 1	55.5 23	30.8 3	40.1 5	03.4	745
12	225	503	160	59.4	108.3	158.1	206.0	255.8	305.6	354.5	403.4	453.2	503	15.3	21.9	32.3	48.6	70.6 1	05.0 15	55.8 2	29.6 3	39.9	503
	150	223		26.3	48.0	70.1	91.3	113.4	135.5	157.2	178.8	200.9	223	6.8	9.7	14.3	24.7	31.3 4	46.6 6	9.1 1	01.8 1	50.7	223
	350	1050		124.0	226.0	330.0	430.0	534.0	638.0	740.0	842.0	946.0	1050	31.9	45.7	67.5 1	01.4 1	47.3 2	19.2 32	25.2 4	79.3 7	09.5	1050
14	265	685	180	80.9	147.5	215.3	281	348	416.2	483	549.3	617.2	685	20.8	29.8	44.1	56.1	96.1 1	43.0 2	12.2 3	12.7 4	62.9	685
	175	304		35.9	65.4	95.6	124.5	154.6	184.7	214.2	243.8	273.9	304	9.2	13.2	19.6	29.4	42.6 (53.5 9	4.2 1	38.8 2	05.4	304
	400	1450		171.3	312.1	455.8	593.8	737.5	881.1	1021.9	1162.8	1306.4	1450	44.0	63.1	93.3	140 2	203.4 3	02.7 44	49.1 6	61.9 9	1 6.67	1450
16	300	895	200	105.7	192.7	281.3	366.5	455.2	543.8	630.8	717.7	806.4	895	27.2	38.9	57.6	86.4 1	25.5 1	86.9 2'	77.2 4	08.6	505	895
	200	398		47.0	86	125.1	163.0	202.4	241.8	280.5	319.2	358.6	398	12	17.3	26	38.4	55.8	83.1 12	23.3 1	81.7 2	69.0	398

G06. Multistage Flow Coefficient

Valve Size																						
valve Size	Doted Flow	Mar										Thrust	t* (kN) *									
0120	Kated Flow	MaX Studio					Leakag	e Class I	V								Leakag	e Class V	7			
(hou)		(mm)				SI	nut off Pr	essure (l	barg)							Shi	ut off Pr	essure (b	arg)			
			10	20	30	40	50	60	70	80	90	100	10	20	30	40	50	60	70	80	90	100
	7.4		0.7	1.3	1.8	2.4	2.9	3.4	4.0	4.5	5.1	5.6	2.0	2.5	3.1	3.6	4.2	4.7	5.2	5.8	6.3	6.9
-	4	1	0.5	0.8	1.2	1.5	1.9	2.2	2.6	2.9	3.3	3.6	1.5	1.9	2.2	2.6	2.9	3.2	3.6	3.9	4.3	4.6
1	2.6	4	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	1.1	1.3	1.5	1.7	1.9	2	2.2	2.4	2.6	2.8
	0.2		0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5
	17		1.7	3.1	4.5	5.8	7.2	8.6	10	11.4	12.7	14.1	3.7	5.1	6.5	7.9	9.3	10.6	12	13.4	14.8	16.2
1 1/2	10	16	1.0	1.8	2.6	3.3	4.1	4.9	5.7	6.5	7.2	~	2.5	3.3	4.1	4.9	5.6	6.4	7.2	8	8.8	9.5
1 /2	4	10	0.5	0.8	1.2	1.5	1.9	2.2	2.6	2.9	3.3	3.6	1.5	1.9	2.2	2.6	2.9	3.2	3.6	3.9	4.3	4.6
	0.9		0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.9	0.7	0.8	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5
	28		2.6	4.7	6.9	6	11.2	13.3	15.5	17.7	19.8	22	5.1	7.3	9.4	11.6	13.7	15.9	18	20.2	22.4	24.5
7	15	25	1.5	2.8	4	5.3	6.5	7.8	6	10.3	11.5	12.8	3.5	4.7	9	7.2	8.5	9.7	11	12.2	13.5	14.7
	7		0.7	1.3	1.8	2.4	2.9	3.4	4	4.5	5.1	5.6	2	2.5	3.1	3.6	4.2	4.7	5.2	5.8	6.3	6.9
	63		6.2	11.7	17.2	22.7	28.3	33.8	39.3	44.8	50.4	55.9	10.2	15.8	21.3	26.8	32.3	37.9	43.4	48.9	54.4	60
ę	35	35	3.6	6.7	9.8	12.9	16	19.1	22.2	25.3	28.4	31.6	6.6	9.7	12.9	16	19.1	22.2	25.3	28.4	31.5	34.6
	15		1.7	3.1	4.5	5.8	7.2	8.6	10	11.4	12.7	14.1	3.7	5.1	6.5	7.9	9.3	10.6	12	13.4	14.8	16.2
	112		9.4	18.1	26.7	35.3	44	52.6	61.2	6.69	78.5	87.1	14.5	23.1	31.8	40.4	49	57.7	66.3	75	83.6	92.2
4	63	45	5.4	10.3	15.2	20	24.9	29.7	34.6	39.4	44.3	49.2	9.3	14.1	19	23.8	28.7	33.5	38.4	43.3	48.1	53
	28		2.6	4.7	6.9	6	11.2	13.3	15.5	17.7	19.8	22	5.1	7.3	9.4	11.6	13.7	15.9	18	20.2	22.4	24.5
	253		21.8	41.2	60.6	80.1	99.5	118.9	138.4	157.8	177.2	196.6	28.2	47.7	67.1	86.5	106	125.4	144.8	164.2	183.7	203.1
9	148	90	13.2	24.6	36.1	47.5	58.9	70.3	81.7	93.2	104.6	116	18.2	29.6	41	52.4	63.9	75.3	86.7	98.1	109.5	121
	63		5.4	10.3	15.2	20	24.9	29.7	34.6	39.4	44.3	49.2	9.3	14.1	19	23.8	28.7	33.5	38.4	43.3	48.1	53
	449		37.7	72.2	106.8	141.3	175.8	210.4	244.9	279.5	314	348.5	46.3	80.8	115.4	149.9	184.4	219	253.5	288.1	322.6	357.1
~	253	100	21.8	41.2	60.6	80.1	99.5	118.9	138.4	157.8	177.2	196.6	28.2	47.7	67.1	86.5	106	125.4	144.8	164.2	183.7	203.1
	112		9.4	18.1	26.7	35.3	44	52.6	61.2	69.9	78.5	87.1	14.5	23.1	31.8	40.4	49	57.7	66.3	75	83.6	92.2
	703		57.9	111.9	165.8	219.8	273.8	327.7	381.7	435.7	489.6	543.6	68.7	122.6	176.6	230.6	284.5	338.5	392.5	446.4	500.4	554.4
10	406	120	34.1	65.3	96.5	127.7	158.8	190	221.2	252.4	283.5	314.7	42.3	73.5	104.7	135.9	167	198.2	229.4	260.5	291.7	322.9
	175		15.5	28.9	42.4	55.9	69.4	82.9	96.4	109.9	123.4	136.9	20.8	34.3	47.8	61.3	74.8	88.3	101.8	115.3	128.8	142.3
	1012		82.4	160.1	237.8	315.6	393.3	471	548.7	626.4	704.1	781.9	95.3	173.1	250.8	328.5	406.2	483.9	561.6	639.3	717.1	794.8
12	569	160	47.2	91	134.7	178.4	222.1	265.8	309.5	353.2	397	440.7	56.9	100.6	144.4	188.1	231.8	275.5	319.2	362.9	406.6	450.4
	253		21.8	41.2	60.6	80.1	99.5	118.9	138.4	157.8	177.2	196.6	28.2	47.7	67.1	86.5	106	125.4	144.8	164.2	183.7	203.1
	1378		111.3	217	322.8	428.6	534.4	640.2	745.9	851.7	957.5	1063.3	126.3	232.1	337.9	443.7	549.5	655.2	761	866.8	972.6	1078.3
14	775	180	64.8	125.4	186.1	246.7	307.3	368	428.6	489.3	549.9	610.5	76.2	136.8	197.5	258.1	318.8	379.4	440	500.7	561.3	622
	344		29.2	55.6	82.1	108.5	135	161.4	187.9	214.3	240.7	267.2	36.7	63.2	89.6	116.1	142.5	168.9	195.4	221.8	248.3	274.7
	1799		144.4	282.6	420.7	558.9	697.1	835.2	973.4	1111.5	1249.7	1387.9	161.7	299.8	438	576.1	714.3	852.5	9.066	1128.8	1266.9	1405.1
16	1012	200	82.4	160.1	237.8	315.6	393.3	471	548.7	626.4	704.1	781.9	95.3	173.1	250.8	328.5	406.2	483.9	561.6	639.3	717.1	794.8
*In thruct	449 ^^loulotion	01+00 04+	37.7	72.2	00.8 0 hoc h	141.3	175.8 dod	210.4	244.9	279.5	314	348.5	46.3	80.8	115.4	149.9	184.4	219	253.5	288.1	322.6	357.1

'In thrust calculation, the actuator spring force has been excluded.

Butterfly Control Valve

B21. Double Offset Butterfly Valve

Double offset butterfly valve is used for rough flow control. These series are designed for operation with tough industrial conditions demanding safety, reliability, and minimum maintenance like water treatment, chemical industry, and gas pipe-works.

1	Туре	Double offset butterfly valve
2	Body Size	3"-32"
3	Disk Form	Inclined conical surface
4	Inherent Characteristic	Linear/Equal percent
5	Pressure Rating	150 & 300
6	Body End Connection	Wafer/ Flange

B22. Triple Offset Butterfly

Triple offset butterfly valve is characterized by the structure of triple offset which has dramatic excellence with no friction on the sealing surface in open and closed position. Additionally, with lower torque, the valve is generally applicable to the field of metallurgy, petroleum, chemical industry, and natural gas.

1	Туре	Triple offset butterfly valve
2	Body Size	6"-32"
3	Disk Form	Inclined conical surface
4	Inherent Characteristic	Linear/Equal percent
5	Pressure Rating	150 & 300
6	Body End Connection	Wafer/ Lug/ Flange

Butterfly Valve Dimension

1	VI C'	P		Dimensi	on (mm)	
	(inch)	Pressure		L	H1	нэ
	(men)	Katilig	Short	Wafer/ Lug	пі	112
	3	150	114	48	138	125
	5	300	114	40	138	125
	4	150	127	54	158	148
	+	300	127	54	158	148
	6	150	140	57	158	165
	0	300	140	57	200	192
	8	150	152	64	225	215
	0	300	132	04	243	236
	10	150	165	71	250	240
	10	300	105	/1	275	260
	12	150	179	91	291	283
	12	300	170	01	307	297
	14	150	101	02	318	303
	14	300	191	92	340	330
	16	150	216	102	348	338
	10	300	210	102	375	361
	19	150	222	114	392	380
	10	300	222	114	422	407
	20	150	220	127	425	410
	20	300	229	127	470	441
	24	150	267	154	525	495
	24	300	207	134	553	511
	28	150	202	165	620	573
	28	300	292	105	656	612
	20	150	225	109	700	645
	32	300	525	198	720	665

Butterfly Valve Flow Coefficient

			Doul	ble Offset	Butterfly	Valve				
Valve					Flo	ow Coeffic	ient (C _V)			
Size (inch)	Rated Flow Coefficient (C _V)					Opening D)egree			
		10°	20°	30°	40°	50°	60°	70°	80°	90°
3	370	2	22	49	72	113	172	246	317	370
4	578	5	43	81	134	201	282	379	511	578
6	1387	16	83	146	243	395	601	909	1214	1387
8	2659	50	158	279	421	664	1032	1606	2296	2659
10	4162	97	208	425	707	1162	1737	2522	3482	4162
12	6011	124	306	602	1134	1789	2606	3736	4913	6011
14	8439	148	349	707	1239	2021	3121	4676	6971	8439
16	10982	253	453	884	1611	2626	4059	6087	9072	10982
18	13872	362	566	1168	2035	3318	5138	7687	11456	13872
20	17109	630	717	1445	2532	4185	6497	9653	14369	17109
24	24970	937	1040	2173	3688	6069	9364	13988	21039	24970
28	34911	1203	1445	2959	5144	8381	13005	19594	29154	34911
32	46471	1632	1965	3930	6901	11098	17594	26126	39593	46471

			Triple	Offset B	utterfly	Valve					
					Fl	low Coeffi	cient (C _V)				
Valve Size (inch)	Rated Flow Coefficient (C _V)					Opening	Degree				
		10°	20°	30°	40°	50°	60°	70°	80°	90°	
6	1470	43	84	158	252	393	610	992	1290	1470	
8	2615	75	151	282	449	699	1085	1763	2294	2615	
10	4567	118	236	440	701	1092	1697	2755	3729	4567	
12	6578	170	340	635	1009	1572	2443	3966	5371	6578	
14 8953 231 462 864 1373 2140 3325 5399 7311 8953											
16	11694	302	603	1128	1794	2795	4343	7052	9549	11694	
18	14800	383	764	1428	2270	3537	5497	8924	12084	14800	
20	18272	472	943	1762	2803	4367	6786	11018	14919	18272	
24	29417	680	1358	2537	4036	6290	9876	15866	22438	29417	
28	40039	925	1850	3454	5493	8561	13301	21595	30542	40039	
32	52296	1208	2416	4512	7175	11182	17372	28206	39890	52296	

Ball Control Valve

V-Notch Ball Valve Dimension

A41. V- Notch Ball

The V-notch ball is a new concept and structure. Its primary specialty is adopting an integer body, a valve body with more bear pressure capability. In this model, both of metal seat and a soft seal are used and both of them can mate with the same body.

1	Туре	V-notch ball valve
2	Body Size	1"-16"
3	Disk Form	V-notch half ball
4	Inherent Characteristic	Modified/Equal percent
5	Pressure Rating	150 & 300
6	Body End Connection	Flange

		I	Dimension (mm)
Valve Size (inch)	Pressure Rating	L	H1	Н2
	150	127		
1	300	165	73	81
	600	216		
	150	165		
1 1/2	300	190	80	90
	600	241		
	150	178		
2	300	216	90	93
	600	292		
	150	203		
3	300	283	118	123
	600	356		
	150	229		
4	300	305	130	138
	600	432		
	150	394		
6	300	403	170	170
	600	559		
	150	457		
8	300	502	201	200
	600	660		
	150	533		
10	300	568	237	240
	600	787		
	150	610		
12	300	648	282	286
	600	838		
	150	686		
14	300	762	337	330
	600	889		
	150	762		
16	300	838	372	367
	600	991		

Valve Size	Rated Flow		Flow Coefficient (Cv)											
(inch)	(C-)						Travel (%)							
	(Cv)	10	20	30	40	50	60	70	80	90	100			
1	35	1.1	1.5	2.2	3.3	4.9	7.2	10.7	15.8	23.4	35			
1 1/2	65	2.0	2.8	4.2	6.3	9.1	13.5	20.1	29.6	43.7	65			
2	104	3.2	4.5	6.7	10.0	14.6	22	32.2	47.5	70.3	104			
3	266	8.1	11.6	17.1	25.7	37.3	55.5	82.3	121.4	179.7	265.9			
4	447	13.6	19.5	28.8	43.2	62.8	93.4	138.6	160	302.3	447			
6	1116	33.9	48.5	71.7	107.7	156.5	233	345.5	509.2	753.8	1116			
8	1811	55.0	78.8	116.5	174.9	254.1	378.2	561.1	826.9	1224.1	1812			
10	2774	84.2	120.7	178.4	267.9	389.2	579.2	859.3	1266.5	1874.8	2774			
12	4508	136.8	196.2	290.0	435.3	632.4	941.3	1396.4	2058.0	3046.6	4508			
14	7109	215.7	309.3	457.2	686.5	997.2	1484.3	2202	3245.4	4804.3	7109			
16	11329	343.8	492.9	728.6	1094.0	1800	2365.2	3508.9	5171.5	7655.6	11329			

Control Valve Actuator

Actuator Calculation Procedure

DLA- Diaphragm linear Actuator

Diaphragm actuators are pneumatically operated and use an air supply from the control system or other sources. The most common styles for diaphragm actuators are known as "direct-acting" and "reverse-acting."

		Dimension (mm)						
No.	Diaphragm Linear Actuator Models	H1	H2	D				
1	DLA1	220	78	360				
2	DLA2	320	120	480				
3	DLA3	320	199	640				
4	DLA4	418	337	750				
5	DLA5	503	713	800				

Area (sn?) (mm) Spring ravel (k)	Model	Actuator Effective	Rated Travel	Number of Spring	Spring force at 0 mm	Spring force at			Air Sı	apply Pre	essure (ba	arg)	
DLAI Image (b) Image (b) Image (b) Image (b) Image (b) Image (b) 0.18 1.26 5.0 8.2 1.3 1.48 1.6 0.0 3.2 2.2 314 30 6 0.36 2.52 3.8 6.9 1.00 1.32 16.3 19.5 2.2 9 0.81 5.67 0.6 3.8 6.9 1.00 13.2 16.3 19.5 13.5 9 0.81 5.67 0.6 3.8 6.9 1.00 13.2 16.3 19.5 9 0.81 5.67 0.6 3.8 6.9 1.00 13.2 16.3 19.5 9 0.81 5.67 6.6 1.6 2.4 3.7 3.44 4.5 5.5 1.10 1.18 1.52 1.38 1.62 1.13 1.62 2.13 4.1 5.15 3.4 4.1 1.10 1.10 1.10 1.10		Area (cm ²)	(mm)	Spring	travel (kN)	rated travel (kN)	2	3	4	5	6	7	8
BLA1 34 0.18 1.26 5.0 8.2 1.07 1.48 1.70 20.7 23.9 BLA1 314 30 6 0.27 1.89 4.4 7.5 1.07 1.38 1.70 20.1 23.2 9 0.54 3.78 2.5 5.6 8.8 1.9 1.51 1.82 21.3 9 0.54 3.78 2.5 5.6 8.8 1.9 1.51 1.82 21.3 9 0.54 3.78 1.04 1.74 2.5 3.6 8.9 1.01 1.82 21.3 90 6.3 7.8 1.49 2.02 3.03 3.6 45.7 52.7 90 6.6 1.44 10.08 3.75 6.6 1.51 2.0 2.0 3.6 45.7 52.7 9104 60 1.62 1.13 1.02 2.13 3.44 4.14 1.01 1.02 2.03 3.						(111.1)				Thrust	(kN)		
DLAI 314 30 $1 - 0$ 0.27 1.89 4.4 7.5 10.7 13.8 1.0 10.1 13.2 10.5 23.2 0.54 0.54 3.78 2.5 5.6 8.8 11.9 15.1 18.2 21.3 0.81 5.67 0.6 3.8 6.9 10.0 13.2 16.3 19.5 0.81 5.67 0.6 3.8 6.9 10.0 13.5 10.6 15.7 21.6 15.5 0.81 0.72 5.04 9.1 16.2 21.3 31.4 44.4 51.5 0.90 6.3 7.8 14.9 22.0 30.1 43.2 50.2 0.90 6.3 7.8 14.9 22.1 23.3 34.8 41.9 0.162 11.34 2.8 9.9 16.9 11.8 10.2 27.3 34.3				3	0.18	1.26	5.0	8.2	11.3	14.4	17.6	20.7	23.9
DLA1 314 30 6 0.36 2.52 3.8 6.9 10.0 13.2 16.3 19.5 22.6 9 0.61 3.78 2.5 5.6 8.8 11.9 15.1 18.2 21.3 9 0.81 5.67 0.6 3.8 6.9 10.0 13.2 16.3 19.5 0.81 5.67 0.6 3.8 6.9 10.0 13.2 16.3 19.5 0.81 5.67 0.6 3.8 6.9 10.0 13.2 16.3 19.5 0.81 0.75 0.6 9 10.2 27.3 38.6 41.9 40.0 0.90 6.3 7.8 14.9 20.2 20.3 39.4 46.4 10.8 12.6 13.6 13.6 10.7 27.7 28.3 39.9 46.9 10.2 27.0 11.34 2.8 9.9 10.9 24.0 31.1 38.1 45.2					0.27	1.89	4.4	7.5	10.7	13.8	17.0	20.1	23.2
DLA2 DLA3 DLA3 D.54 3.78 2.5 5.6 8.8 11.9 15.1 18.2 21.3 9 0.54 3.78 2.5 5.6 8.8 11.9 15.1 18.2 21.3 0.81 5.67 0.6 3.8 6.9 10.0 13.2 16.3 19.5 0.90 6.3 7.8 10.4 17.4 24.5 31.5 38.6 45.7 52.7 0.90 6.3 7.8 10.4 17.4 24.5 31.5 38.6 45.7 52.7 0.90 6.3 7.8 14.9 20.0 30.1 41.4 51.5 56.6 13.6 20.7 21.8 48.4 49.0 46.4 43.2 50.2 43.9 41.4 43.0 50.2 43.9 43.4 41.4 43.0 50.2 73.3 34.3 41.4 43.2 30.6 37.6 44.6 13.1 10.1 17.2 29.3 36.4	DLA1	314	30	6	0.36	2.52	3.8	6.9	10.0	13.2	16.3	19.5	22.6
DLA2 9 0.54 3.78 2.5 5.6 8.8 11.9 15.1 18.2 21.3 0.81 5.67 0.6 3.8 104 17.4 24.5 31.5 38.6 45.7 52.7 3 0.72 5.04 9.1 16.2 23.2 30.3 37.4 44.4 51.5 0.90 6.3 7.8 14.9 22.0 20.0 36.1 43.2 50.2 0.90 6.3 7.8 14.9 22.0 20.0 36.1 43.2 50.2 60 1.44 10.08 7.6 6.6 13.0 20.2 23.3 34.4 46.4 1.80 12.6 11.34 2.8 50.7 2.7 29.8 36.9 43.9 2.16 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 12 2.88 20.16 - 1.0 8.1 15.2 22.2 29.3	DLIII	011	20	Ŭ	0.54	3.78	2.5	5.6	8.8	11.9	15.1	18.2	21.3
DLA20.815.670.663.786.910.013.216.319.50.543.780.43.780.44.424.531.538.645.752.70.906.37.814.922.030.337.444.451.550.40.906.37.814.922.020.036.143.250.21.001.207.666.613.620.727.834.841.949.01.011.101.101.158.615.722.729.836.946.41.021.1341.289.916.924.031.138.141.41.021.1341.289.916.924.031.138.141.41.022.1615.12-6.113.120.227.334.341.41.22.8820.16-1.01.111.122.2330.637.61.141.22.8820.161.01.122.4331.31.151.161.12-6.11.111.111.122.4331.31.141.22.22.93.602.523.110.11.722.4331.31.141.22.82.161.1342.89.91.11.122.4331.31.151.122.43.602.523.110.1				9	0.54	3.78	2.5	5.6	8.8	11.9	15.1	18.2	21.3
DLA2 0.54 3.78 10.4 17.4 24.5 3.1.5 3.8.6 45.7 52.7 0.09 6.3 7.8 10.4 17.4 24.5 31.5 38.6 45.7 52.7 0.09 6.3 7.8 1.62 20.2 20.3 37.4 44.4 51.5 0.09 6.3 7.8 1.08 7.6 6.6 1.6 20.7 27.8 34.8 41.9 49.0 0.100 1.160 11.34 1.08 5.1 1.1 18.2 25.2 32.3 39.4 46.4 1.80 12.6 11.5 8.6 15.7 2.7.7 29.8 30.6 37.6 1.80 12.6 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 1.2 2.88 20.16 15.12 - 31.1 10.1 17.2 24.3 31.3 1.43 1.08 9.72 1.5 4.0				,	0.81	5.67	0.6	3.8	6.9	10.0	13.2	16.3	19.5
DLA2					0.54	3.78	10.4	17.4	24.5	31.5	38.6	45.7	52.7
DLA2 0.90 6.3 7.8 14.9 2.0 2.0 3.61 43.2 50.2 0.108 7.56 6.6 13.6 2.07 27.8 34.8 41.9 49.0 0.108 1.10 10.08 4.1 11.1 18.2 25.2 32.3 39.4 46.4 1.80 1.26 1.3.4 2.8 86.6 15.2 2.7 29.8 36.9 43.9 9 2.16 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 12 2.70 18.9 - 6.1 13.1 20.2 27.3 34.3 41.4 12 2.66 15.12 - 6.1 13.1 20.2 29.3 36.1 12 3.60 2.52 - - 3.1 10.1 17.2 24.3 31.3 12 3.60 2.16 19.4 5.7 18.2 30.4 45.0 5.5				3	0.72	5.04	9.1	16.2	23.2	30.3	37.4	44.4	51.5
DLA2 706 60 1.08 7.56 6.6 1.3.6 20.7 27.8 34.8 41.9 49.0 DLA2 706 6 1.44 10.08 4.1 11.1 18.2 25.2 32.3 39.4 46.4 1.80 1.2.6 1.51 8.6 15.7 22.7 29.8 36.9 43.9 9 1.62 11.34 2.8 0.99 16.0 31.1 45.2 9 2.16 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 12 2.88 20.16 - 1.0 8.1 10.2 22.2 29.3 36.4 12 2.88 20.16 - 1.0 8.1 10.1 17.1 24.3 31.3 12 3.60 3.24 - 5.3 18.2 36.8 43.4 55.9 68.5 81.0 12 3.60 3.24 2.54 4.5.7					0.90	6.3	7.8	14.9	22.0	29.0	36.1	43.2	50.2
DLA2 706 60 60 60 60 60 60 60 60 706					1.08	7.56	6.6	13.6	20.7	27.8	34.8	41.9	49.0
DLA2 PLA270660601.8012.61.58.615.72.72.9.836.943.991.6211.342.89.916.924.031.138.145.292.1615.12-6.113.120.227.334.341.42.7018.9-2.39.416.423.530.637.610010010.110.110.110.227.334.341.42.7018.9-6.113.120.227.334.341.41002.7018.9-6.113.120.227.334.341.41002.8820.16-10.8115.222.229.336.410117.224.331.036.436.025.231.110.117.224.331.410117.224.331.097.215.428.040.553.165.678.290.81023.6032.4-5.317.830.443.055.568.11123.6032.4-5.317.830.443.055.568.11123.6032.4-5.317.830.435.9142.51041945.718.230.864.153.715.315.568.11123.6032.4-5.317.837.7<				6	1.44	10.08	4.1	11.1	18.2	25.2	32.3	39.4	46.4
DLA2 1/06 60 60 1.62 11.34 2.8 99 16.9 24.0 31.1 38.1 45.2 9 2.16 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 2.70 18.9 - 2.3 9.4 16.4 23.5 30.6 37.6 2.70 18.9 - 2.3 9.4 16.4 23.5 30.6 37.6 10 1.512 - 6.1 13.1 20.2 27.3 34.3 41.4 10 2.88 20.16 - 1.0 81.1 51.2 22.2 29.3 36.4 3.60 25.2 - - 3.1 10.1 17.2 24.3 31.3 0.04 8.11 17.0 29.6 42.1 54.7 67.3 79.8 92.4 0.143 1.25 1.80 16.2 8.9 21.5 34.0 46.6 59.2		706	60		1.80	12.6	1.5	8.6	15.7	22.7	29.8	36.9	43.9
DLA3 1256 9 2.16 15.12 - 6.1 13.1 20.2 27.3 34.3 41.4 10 2.70 18.9 - 2.3 9.4 16.4 23.5 30.6 37.6 112 2.88 20.16 - 6.1 13.1 20.2 27.3 34.3 41.4 12 2.88 20.16 - 1.0 8.1 15.2 22.2 29.3 36.4 12 2.88 20.16 - 1.0 8.1 15.2 22.2 29.3 36.4 12 3.60 25.2 - - 3.1 10.1 17.2 24.3 31.3 1256 80 16.2 8.9 21.5 34.0 6.6 78.2 90.8 121 3.60 32.4 5.7 18.2 30.4 43.0 55.5 68.1 122 3.60 32.4 12.4 24.8 44.4 64.0 83	DLAZ	700	00		1.62	11.34	2.8	9.9	16.9	24.0	31.1	38.1	45.2
DLA316012.7018.9-2.39.416.423.530.637.6122.1615.12-6.113.120.227.334.341.4122.8820.16-1.08.115.222.229.336.43.6025.23.110.117.224.331.3DLA312568030.908.117.029.642.154.767.379.892.4125661.8016.28.921.534.046.659.271.784.3125661.8016.28.921.534.046.655.568.1123.6032.4-5.317.830.443.055.568.1123.6032.4-5.317.830.443.055.568.1196210612.4226.846.566.185.7105.3125.0144.619621063.7828.9810.329.949.569.188.8108.4128.019621063.7828.9810.329.949.569.188.8108.4128.01964167.5557.96-0.920.540.259.879.490.0123.2424.8414.444.534.068.187.7107.3126.48 </td <td></td> <td></td> <td></td> <td>9</td> <td>2.16</td> <td>15.12</td> <td>-</td> <td>6.1</td> <td>13.1</td> <td>20.2</td> <td>27.3</td> <td>34.3</td> <td>41.4</td>				9	2.16	15.12	-	6.1	13.1	20.2	27.3	34.3	41.4
$ \begin{tabular}{ c c c c c c c c c c c } \hline $1.1 1.1 1.1 2.2 2.3 3.3 $4.1 4.1 1.2 2.2 2.3 3.4 4.1 3.6 2.5 1.0 1.0 1.0 1.1 1.2 2.2 2.3 3.4 3.4 3.4 3.6 3.6 3.6 2.5 2.5 3.1 1.0 1.1 1.2 2.2 2.3 3.4 3.4 3.4 3.5 3.6 3.6 3.6 3.6 2.5 2.5 3.1 1.0 1.1 1.2 2.2 2.3 3.4 3.3 1.3 3.4 1.4 3.6 2.5 3.1 1.0 1.1 1.2 2.2 2.3 3.4 3.3 1.4 3.6 3.6 2.5 3.1 1.0 1.1 1.2 2.2 2.3 3.6 3.1 1.5 1.0 1.1 1.0 1.1 1.2 2.2 2.3 3.3 1.3 1.4 1.5 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.2 2.2 2.3 3.6 1.1 1.1 1.1 1.1 1.1 1.1 1.2 2.4 1.1				2.70	18.9	-	2.3	9.4	16.4	23.5	30.6	37.6	
$ \begin{array}{ c c c c c c c } \hline 12 & 2.88 & 20.16 & - & 1.0 & 8.1 & 15.2 & 2.2 & 29.3 & 36.4 \\ \hline 3.60 & 25.2 & - & - & 3.1 & 10.1 & 17.2 & 24.3 & 31.3 \\ \hline 3.60 & 25.2 & - & - & 3.1 & 10.1 & 17.2 & 24.3 & 31.3 \\ \hline 3.60 & 25.2 & - & - & 3.1 & 10.1 & 17.2 & 24.3 & 31.3 \\ \hline 3.60 & 9.72 & 15.4 & 28.0 & 40.5 & 53.1 & 65.6 & 78.2 & 90.8 \\ \hline 12 & 1.08 & 16.2 & 8.9 & 21.5 & 34.0 & 46.6 & 59.2 & 71.7 & 84.3 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 3.60 & 32.4 & 24.84 & 14.4 & 44.5 & 34.0 & 64.1 & 53.7 & 83.7 & 73.3 \\ \hline 1962 & 100 & 6 & 3.24 & 24.84 & 14.4 & 44.5 & 34.0 & 64.1 & 53.7 & 83.7 & 73.3 \\ \hline 12 & 6.48 & 49.68 & - & 9.2 & 28.8 & 48.4 & 68.1 & 87.7 & 107.3 \\ \hline 12 & 6.48 & 49.68 & - & 9.2 & 28.8 & 48.4 & 68.1 & 87.7 & 107.3 \\ \hline 25.5 & 25.6 & 57.96 & - & 0.9 & 20.5 & 40.2 & 59.8 & 79.4 & 99.0 \\ \hline 12 & 6.48 & 49.68 & - & 9.2 & 28.8 & 48.4 & 68.1 & 87.7 & 107.3 \\ \hline 25.6 & 57.96 & - & 0.9 & 20.5 & 40.2 & 59.8 & 79.4 & 99.0 \\ \hline 2826 & 160 & 6 & 5.04 & 45.36 & 11.2 & 39.4 & 67.1 & 15.4 & 143.6 & 17.1 & 20.4 \\ \hline 12 & 10.08 & 90.72 & - & 0.9 & 20.5 & 40.2 & 59.8 & 79.4 & 99.0 \\ \hline 12 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 11.52 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 20.2 & 102.8 & 42.7 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 20.2 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 20.2 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 20.2 & 10.2 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 20.2 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 20.2 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 20.2 & 10.08 & 90.72 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 20.2 & 10.2 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 20.2 & 10.2 & 103.68 & - & - & 9.4 & 37.6 & 65.$				2.16	15.12	-	6.1	13.1	20.2	27.3	34.3	41.4	
DLA3 1256 80 3.60 25.2 - - 3.1 10.1 17.2 24.3 31.3 DLA3 1256 80 3 0.90 8.1 17.0 29.6 42.1 54.7 67.3 79.8 92.4 DLA3 1256 80 6 1.08 9.72 15.4 28.0 40.5 53.1 65.6 78.2 90.8 100 6 1.80 16.2 8.9 21.5 34.0 46.6 59.2 71.7 84.3 112 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 112 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 1140 14.9 24.8 44.4 64.0 83.6 103.3 122.9 142.5 1160 6 3.78 28.98 10.3 29.9 49.5 69.1 88.8 108.4				12	2.88	20.16	-	1.0	8.1	15.2	22.2	29.3	36.4
DLA3 1256 80 3 0.90 8.1 17.0 29.6 42.1 54.7 67.3 79.8 92.4 1.08 9.72 15.4 28.0 40.5 53.1 65.6 78.2 90.8 2.16 19.44 5.7 18.2 30.0 46.6 59.2 71.7 84.3 12 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 12 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 12 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 12 3.60 32.4 - 5.3 17.8 30.4 43.0 55.5 68.1 14.49 24.8 44.4 64.0 83.6 103.3 122.9 142.5 3.78 28.98 10.3 29.9 49.5 69.1 88.8 108.					3.60	25.2	-	-	3.1	10.1	17.2	24.3	31.3
$ \begin{array}{ c c c c c c c c } \hline DLA3 & 1256 & 80 & \hline 3 & 1.08 & 9.72 & 15.4 & 28.0 & 40.5 & 53.1 & 65.6 & 78.2 & 90.8 \\ \hline & & & & & & & & & & & & & & & & & &$				2	0.90	8.1	17.0	29.6	42.1	54.7	67.3	79.8	92.4
$ \begin{array}{ c c c c c c c c } \hline DLA3 & 1256 & 80 & 6 & 1.80 & 16.2 & 8.9 & 21.5 & 34.0 & 46.6 & 59.2 & 71.7 & 84.3 \\ \hline 2.16 & 19.44 & 5.7 & 18.2 & 30.8 & 43.4 & 55.9 & 68.5 & 81.0 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 3.60 & 32.4 & - & 5.3 & 17.8 & 30.4 & 43.0 & 55.5 & 68.1 \\ \hline 12 & 1.62 & 12.42 & 26.8 & 46.5 & 66.1 & 85.7 & 105.3 & 125.0 & 144.6 \\ \hline 18 & 1.89 & 14.49 & 24.8 & 44.4 & 64.0 & 83.6 & 103.3 & 122.9 & 142.5 \\ \hline 1962 & 100 & 6 & 3.24 & 24.84 & 14.4 & 44.5 & 34.0 & 64.1 & 53.7 & 83.7 & 73.3 \\ \hline 1962 & 100 & 6 & 3.78 & 28.98 & 10.3 & 29.9 & 49.5 & 69.1 & 88.8 & 108.4 & 128.0 \\ \hline 12 & 6.48 & 49.68 & - & 9.2 & 28.8 & 48.4 & 68.1 & 87.7 & 107.3 \\ \hline 12 & 6.48 & 49.68 & - & 9.2 & 28.8 & 48.4 & 68.1 & 87.7 & 107.3 \\ \hline 10 & 2.52 & 22.68 & 33.8 & 62.1 & 90.4 & 118.6 & 146.9 & 175.1 & 203.4 \\ \hline 288 & 25.92 & 30.6 & 58.9 & 87.1 & 115.4 & 143.6 & 171.9 & 200.2 \\ \hline 10 & 6 & 5.04 & 45.36 & 11.2 & 39.4 & 67.7 & 95.9 & 124.2 & 152.5 & 180.7 \\ \hline 12 & 10.08 & 90.72 & - & - & 22.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 11.52 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 12 & 10.08 & 90.72 & - & - & 24.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 11 & 11.52 & 103.68 & - & - & 9.4 & 37.6 & 65.9 & 94.1 & 122.4 \\ \hline 12 & 10.08 & 90.72 & - & - & 24.3 & 50.6 & 78.8 & 107.1 & 135.4 \\ \hline 11 & 11 & 11 & 11 & 11 & 11 & 11 & $				3	1.08	9.72	15.4	28.0	40.5	53.1	65.6	78.2	90.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DLA3	1256	80	(1.80	16.2	8.9	21.5	34.0	46.6	59.2	71.7	84.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				6	2.16	19.44	5.7	18.2	30.8	43.4	55.9	68.5	81.0
$ {\rm DLA4} \\ {\rm DLA4} \\ {\rm 1962} \\ {\rm 106} \\ $				12	3.60	32.4	-	5.3	17.8	30.4	43.0	55.5	68.1
DLA4 1962 100 5 1.89 14.49 24.8 44.4 64.0 83.6 103.3 122.9 142.5 DLA4 1962 100 6 3.24 24.84 14.4 44.5 34.0 64.1 53.7 83.7 73.3 1962 100 6 3.78 28.98 10.3 29.9 49.5 69.1 88.8 108.4 128.0 12 6.48 49.68 - 9.2 28.8 48.4 68.1 87.7 107.3 12 7.56 57.96 - 0.9 20.5 40.2 59.8 79.4 99.0 2826 160 6 5.04 45.36 11.2 39.4 67.7 95.9 124.2 152.5 180.7 12 10.08 90.72 - - 92.3 50.6 78.8 107.1 135.4 12 10.08 90.72 - - 22.3 50.6 <td< td=""><td></td><td></td><td></td><td>2</td><td>1.62</td><td>12.42</td><td>26.8</td><td>46.5</td><td>66.1</td><td>85.7</td><td>105.3</td><td>125.0</td><td>144.6</td></td<>				2	1.62	12.42	26.8	46.5	66.1	85.7	105.3	125.0	144.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5	1.89	14.49	24.8	44.4	64.0	83.6	103.3	122.9	142.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1062	100	6	3.24	24.84	14.4	44.5	34.0	64.1	53.7	83.7	73.3
DLA5 2826 160 6.48 49.68 - 9.2 28.8 48.4 68.1 87.7 107.3 DLA5 7.56 57.96 - 0.9 20.5 40.2 59.8 79.4 99.0 2826 160 3 2.52 22.68 33.8 62.1 90.4 118.6 146.9 175.1 203.4 2826 160 6 5.04 45.36 11.2 39.4 67.7 95.9 124.2 152.5 180.7 12 10.08 90.72 - - 22.3 50.6 78.8 107.1 135.4 12 11.52 103.68 - - 9.4 37.6 65.9 94.1 122.4	DLA4	1902	100	0	3.78	28.98	10.3	29.9	49.5	69.1	88.8	108.4	128.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10	6.48	49.68	-	9.2	28.8	48.4	68.1	87.7	107.3
$ {\rm DLA5} \ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				12	7.56	57.96	-	0.9	20.5	40.2	59.8	79.4	99.0
$ \textbf{DLA5} \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2	2.52	22.68	33.8	62.1	90.4	118.6	146.9	175.1	203.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3	2.88	25.92	30.6	58.9	87.1	115.4	143.6	171.9	200.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DLAC		1(0	(5.04	45.36	11.2	39.4	67.7	95.9	124.2	152.5	180.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DLAS	2826	160	6	5.76	51.84	4.7	32.9	61.2	89.5	117.7	146.0	174.2
12 11.52 103.68 9.4 37.6 65.9 94.1 122.4				10.08	90.72	-	-	22.3	50.6	78.8	107.1	135.4	
				12	11.52	103.68	-	-	9.4	37.6	65.9	94.1	122.4

PLA- Piston linear Actuator

Piston linear actuator uses air pressure or natural gas to provide the force required to open, close and control rising stem valves. To provide proper failure position, spring cartridges allow for fail open or fail closed valve applications. This is extremely important in emergency shutdown applications.

	Dimension (mm)					
Piston Linear Actuator Models	Н	D				
PLA1	584	373				
PLA2	920	461				
PLA3	982	573				
PLA4	1773	670				
PLA5	1810	911				
PLA6	1900	1180				

	Actuator	Rated	Spring force range at	Spring force	ring rce ge at																			
Model	Area	Travel	zero	rated	2	3	4	5	6	7	8	9	10											
	(cm ²)	(mm)	mm travel (kN)	travel (kN)				Thru	st range	(kN)														
			0.9	11.7	2.4	9.5	16.6	23.6	30.7	37.8	44.8	51.9	59.0											
PLA1	706	120	1.1	14.3	-	6.9	14.0	21.0	28.1	35.2	42.2	49.3	56.4											
			1.4	18.2	-	3.0	10.1	17.1	24.2	31.3	38.3	45.4	52.5											
			0.9	12.7	8.0	20.6	33.1	45.7	58.3	70.8	83.4	95.9	108.5											
PLA2	1256	180	1.1	17.0	4.2	16.8	29.3	41.9	54.5	67.0	79.6	92.1	104.7											
			1.4	20.5	-	11.1	23.6	36.2	48.8	61.3	73.9	86.4	99.0											
		240	2.3	12.7	10.0	29.6	49.3	68.9	88.5	108.1	127.8	147.4	167.0											
PLA3	1962		240	240	240	240	240	240	240	240	240	240	240	2.9	17.0	2.2	21.8	41.5	61.1	80.7	100.3	120.0	139.6	159.2
			3.6	20.5	-	12.1	31.7	51.3	71.0	90.6	110.2	129.8	149.5											
			3	45	11.5	39.8	68.0	96.3	124.6	152.8	181.1	209.3	237.6											
PLA4	2826	280	3.8	57	-	27.8	56.0	84.3	112.6	140.8	169.1	197.3	225.6											
			4.8	72	-	12.8	41.0	69.3	97.6	125.8	154.1	182.3	210.6											
			3	63	13.9	52.4	90.9	129.3	167.8	206.3	244.7	283.2	321.7											
PLA5	3846	300	3.3	69.3	7.6	46.1	84.6	123.0	161.5	200.0	238.4	276.9	315.4											
			3.9	81.9	0.0	33.5	72.0	110.4	148.9	187.4	225.8	264.3	302.8											
			4	64	36.5	86.7	137.0	187.2	237.4	287.7	337.9	388.2	438.4											
PLA6	5024	320	4.4	70.4	30.1	80.3	130.6	180.8	231.0	281.3	331.5	381.8	432.0											
		_ •	320	320	320	320	320	320	5.2	83.2	17.3	67.5	117.8	168.0	218.2	268.5	318.7	369.0	419.2					

RAR- Rack and Pinion Rotary Actuator

Rack-and-pinion pneumatic actuators are rotary actuators used for turning, opening, closing, mixing, oscillating, positioning, steering, and many more mechanical functions involving restricted rotation. These actuators convert the energy of compressed air using pneumatic cylinder to an oscillating rotary motion.

Rack and Pinion Rotary		Dimensi	ion (mm)
Actuator Models	Act	L	D
D A D 1	DA	372	101.5
KAKI	SR	473	191.5
$\mathbf{D} \wedge \mathbf{D} 2$	DA	461	242.5
KAKZ	SR	601	242.3
D Δ D 3	DA	510	276.5
KAKJ	SR	702	270.5
	DA	518	256
KAR4	SR	738	330
D 4 D 5	DA	630	415
KAKJ	SR	940	413

	Actuator Effective		Spring				ł	Air Supp	oly Pres	sure (ba	rg)				
Model	Area	Act	Arrangement Model	3		4	4		5		6		7		8
	(cm ²)		Widder		0.00			T	orque (Nm)			0.00		0.00
		D 11		0°	90°	00	90°	00	90°	0°	90°	00	90°	00	90°
		Act (DA)	-	359		4′	79	59	98	7	18	83	37	957	
			03	260	209	380	328	500	448	619	568	739	687	858	807
RAR1	201	Spring	04	227	159	347	278	467	398	586	518	706	637	826	757
		Return	05	-	-	314	228	434	348	553	467	673	587	793	707
		(SR)	06	-	-	-	-	401	298	521	417	640	537	760	657
			07	-	-	-				488	367	607	487	727	607
		Double Act (DA)	-	707		92	24	11	78	14	13	16	49	18	84
			03	477	349	712	584	948	820	1183	1055	1419	1291	1654	1526
RAR2	345	Spring	04	400	229	636	465	871	700	1107	936	1342	1171	1578	1407
		Return	05			559	345	795	581	1030	816	1266	1052	1501	1287
		(SR)	06					718	461	954	697	1189	933	1425	1168
			07					642	342	877	578	1113	813	1348	1049
		Double Act (DA)	-	1087		14	48	18	10	21	27	25	34	28	96
			03	702	509	1064	871	1426	1233	1788	1595	2150	1957	2512	2319
RAR3	452	Spring	04	574	316	936	678	1298	1040	1660	1402	2022	1764	2384	2126
		Return	05			808	486	1170	848	1532	1210	1894	1572	2256	1934
		(SR)	06					1042	655	1404	1017	1766	1379	2128	1741
			07					914	463	1276	825	1638	1187	2000	1549
		Double Act (DA)	-	1730		18	76	24	-53	30	129	36	06	39	29
			03	1299	1045	1876	1622	2453	2199	3029	2775	3606	3352	4183	3929
RAR4	706	Spring	04	1155	816	1732	1393	2309	1970	2886	2547	3462	3124	4039	3700
		Return	05			1588	1165	2165	1742	2742	2318	3319	2895	3895	3472
		(SR)	06			1444	936	2021	1513	2598	2090	3175	2667	3752	3243
			07					1877	1285	2454	1861	3031	2438	3608	3015
		Double Act (DA)	-	2408		32	10	40	13	4816		5618		6421	
RAR5	907		04	1549	880	2351	1683	3154	2485	3956	3288	4759	4091	5068	4399
iu iito	201	Spring	05			2136	1301	2939	2104	3742	2906	4544	3709	4853	4017
		(SR)	06					2724	1722	3527	2524	4329	3327	4638	3636
			07							3312	2142	4115	2945	4423	3254

SAR-DA. Double Act Scotch & Yoke

Rotary Actuator The scotch yoke is a mechanism that converts a linear motion of a bar sliding back-and- forth into a rotational motion. The sliding bar is directly coupled to a piston and a yoke with a slot that engages a sliding block.

Madal		Dimens	ion (mm)	
Model	L1	L2	M1	M2
SAR-DA1	350	124	85	123
SAR-DA2	423	165	68	188
SAR-DA3	499	190	80	230
SAR-DA4	499	190	107.5	257.5
SAR-DA5	582	222	117.5	297.5
SAR-DA6	582	222	172.5	322.5
SAR-DA7	705	287	148	368
SAR-DA8	705	287	175	395
SAR-DA9	832	326	170	450
SAR-DA10	970	388	165	505
SAR-DA11	970	388	216	556
SAR-DA12	1130	440	239	639
SAR-DA13	1420	3150	220	760
SAR-DA14	1420	3150	270	810
SAR-DA15	1420	3150	320	860

	Astructor	Air Supply Pressure (bar)											
	Actuator		3		4		5		6		7		
Model	Effective					Torqu	e (Nm)						
	Area (cm ²)	Open- Close	Running	Open- Close	Running	Open- Close	Running	Open- Close	Running	Open- Close	Running		
SAR- DA1	177	293	176	391	235	489	293	586	352	-	-		
SAR- DA2	314	822	499	1096	665	1370	831	1643	997	1918	1163		
SAR- DA3	491	1590	964	2120	1286	2650	1607	3180	1929	3710	2250		
SAR- DA4	707	2289	1389	3053	1851	3816	2315	-	-	-	-		
SAR- DA5	962	3847	2333	5130	3112	6412	3890	7695	4668	-	-		
SAR- DA6	1256	4884	2963	6513	3950	8141	4938	-	-	-	-		
SAR- DA7	1590	7556	4583	10074	6111	12328	7478	15112	9167	-	-		
SAR- DA8	1962	9329	5659	12439	7546	15549	9433	-	-	-	-		
SAR- DA9	2375	14367	8715	19156	11621	23944	14526	28734	17431	33523	20337		
SAR- DA10	2826	20762	12595	27683	16793	34604	20993	41526	25192	48446	29390		
SAR- DA11	3847	28259	17143	37680	22859	47101	28574	56521	34288	65940	40004		
SAR- DA12	5024	43425	26343	57899	35125	72375	43907	86851	52689	101325	61471		
SAR- DA13	6359	74196	45011	98928	60016	123659	75020	148392	90024	173124	105028		
SAR- DA14	7850	91600	55570	122133	74094	152666	92617	183200	111141	213733	129664		
SAR- DA15	9499	110835	67240	147781	89653	184726	112067	221671	134480	258616	156893		

SAR-SR. Spring Return Scotch & Yoke Rotary Actuator

Madal		Dimens	ion (mm)	
Widdei	L1	L2	M1	M2
SAR-SR1	335	465	75	143.5
SAR-SR2	442	619	68	188
SAR-SR3	507	775	80	230
SAR-SR4	507	775	107.5	257.5
SAR-SR5	587	940	117.5	297.5
SAR-SR6	590	940	172.5	322.5
SAR-SR7	715	1165	148	368
SAR-SR6	707	1165	175	395
SAR-SR8	842	1511	170	450
SAR-SR9	976	1760	165	505
SAR-SR10	980	1760	216	556
SAR-SR11	1405	3100	169	709
SAR-SR12	335	465	75	143.5
SAR-SR13	1416	3100	220	760
SAR-SR14	1422	3100	270	810
SAR-SR15	1444	3100	320	860

Madal	Actuator	Air Supply			To	orque (Nm)		
Iviodei	Area (cm ²)	Pressure (barg)	Air Break	Air Running	Air End	Spring Break	Spring Running	Spring End
		3	172	84	108	176	86	111
SAR-SR1	177	5	285	145	199	276	139	189
		6	325	160	209	360	182	245
		3	518	258	315	506	251	304
SAR-SR2	314	5	868	451	588	781	398	501
		6	1027	513	627	1018	507	617
		3	1056	508	524	1081	503	601
SAR-SR3	491	5	1675	872	1139	1537	787	1001
		6	1998	1033	1335	1877	958	1215
		3	1430	720	893	1420	714	883
SAR-SR4	707	5	2414	1201	1457	2397	1190	1440
		6	3014	1572	2056	2569	1297	1613
		3	2323	1242	1551	2227	1141	1455
SAR-SR5	962	5	3788	2024	2376	3920	1993	2509
		6	4587	2379	2650	4905	2441	2969
		3	3058	1558	1884	2966	1501	1876
SAR-SR6	1256	5	5256	2658	3318	4905	2441	2969
		6	6181	3034	3607	6263	3086	3689
		3	4773	2377	2895	4738	2355	2860
SAR-SR7	1590	5	7813	3961	4873	7850	3928	4820
		6	9502	4802	5986	9281	4665	5766
		3	5924	2903	3440	5984	2939	3500
SAR-SR8	1962 2375	5	9942	5074	6425	9281	4665	5766
		6	11842	6003	7537	11312	5684	7021
		3	9167	4523	5425	9088	4475	5346
SAR-SR9		5	15372	7830	9884	14305	7169	8818
		6	18383	9117	11025	18003	8880	10644
		3	12940	6484	7973	13000	6520	8033
SAR-SR10	2826	5	21428	10904	13745	21212	10770	13529
		6	25289	12671	15316	26364	13337	16660
		3	18378	9527	12352	16195	8173	10169
SAR-SR11	3847	5	29011	14529	17866	29715	14969	18569
		6	35635	17875	22026	35071	17525	21462
		3	35441	18195	21587	36432	18293	22577
SAR-SR12	5024	5	60825	29997	35939	62764	31200	37878
		6	70017	34123	40354	78089	39313	48725
		3	47388	23465	28306	46647	23006	27564
SAR-SR13	6359	5	76197	38139	46832	78089	39313	48725
		6	92311	45658	54974	94932	47283	57595
		3	54655	26172	29770	62764	31199	37878
SAR-SR14	7850	5	96629	48336	59292	94932	47283	57595
		6	114023	58233	73824	111245	56510	71046
		3	63242	34913	33877	78089	34505	48725
SAR-SR15	9499	5	115566	59189	75366	111245	56510	71046
		6	-	-	-	-	-	-

Appendix I- Material Selection

Overview

								Mat	erial					
Part No.	Part Name	Carb	on steel A A216*	STM	High Temperature Service ASTM A217			Stainless Steel ASTM A351				La tempe service A3	ow rature ASTM 352	High resistance service including sea water & sewage ASTM B148
		WCAWCBWCCWC6WC9C5CF3CF3MCF8CF8MLC3						LCB	LCC	C95800				
1	Body	A216- WCA	A216- WCB	A216- WCC	A217- WC6	A217- WC9	A217- C5	A351- CF3	A351- CF3M	A352- CF8	A352- CF8M	A352- LCB	A352- LCC	B148-C95800
2	Seat Ring		A105 SS 304 or SS 316 SS 304 or SS 316 LF2											C95800
	Seat Surface		13% Cr, HF (Stellite), 304, 316, Monel, Hastelloy B (Based on Trim Material Chart)											Alu-Br
3	Disk/Plug/ Ball	A216- WCA	A216- WCB	A216- WCC	A217- WC6	A217- WC9	A217- C5	A351- CF3	A351- CF3M	A352- CF8	A352- CF8M	A352- LCB	A352- LCC	C95800
	Disk/ Plug/ Ball Surface	13% Cr, HF (Stellite), 304, 316, Monel, Hastelloy B (Based on Trim Material Chart)												Alu-Br
4	Valve stem/ Cover			13% Cr, F	IF (Stellite), 304, 316,	Monel, H	astelloy B	(Based on	Trim Mat	erial Chart)		C95200
5	Bonnet/ Cover Gasket					Grap	hite+ SS (304, Ring	Joint					C.A.F, Graphite + SS 304
6	Bonnet/ Cap/ Cover	A216- WCA	A216- WCB	A216- WCC	A217- WC6	A217- WC9	A217- C5	A351- CF3	A351- CF3M	A352- CF8	A352- CF8M	A352- LCB	A352- LCC	В 148-С95800
7	Bolts		A193-B7			A193-B16			A19	3-B8		A32	0-L7	A193-B7
8	Nuts	A194-2H A194-7 A194-8 A194-4								A194-2H				
9	Stem Packing	Reinforced Graphite & Die Formed Graphite Ring, PTFE, Viton												
10	Gland				13%	% Cr, 304, 3	16 (Based	l on Trim	Material Cl	nart)				C95200
11	Handwheel						Ducti	le Iron						

*The NACE material also is available

Body Material

Material	Classification Steel	ASTM REF.	Recommended Temperature Limits	Application
WCB (A 105)	Carbon Steel	A216 Grade WCB	-29 to 425	Steam, Water, Oil, Vapor, gas, and general service
LCB (LF2)	Carbon Steel	A352 Grade LCB	-46 to 350	Low temperature
LCC	Carbon Steel	A352 Grade LCC	-46 to 350	Low temperature
WC6 (F11)	Chromium Molybdenum Steel 1.25% Cr, 0.5% Mo	A217 Grade WC6	-29 to 590	Steam, Water, oil, oil vapor, gas and general service
WC9 (F22)	Chromium Molybdenum Steel 2.25% Cr, 1% Mo	A217 Grade WC9	-29 to 590	Steam, Water, oil, oil vapor, gas and general service
C5	Chromium Molybdenum Steel 5% Cr, 0.5% Mo	A217 Grade C5	-29 to 650	Corrosive/erosive oil
CF8M (316)	Stainless Steel 18% Cr, 10% Ni, 2% Mo	A351 Grade CF8M	-196 to 815	Refinery service
CF8 (304)	Stainless Steel 18% Cr, 10% Ni	A351 Grade CF8	-196 to 815	High and low temperature corrosion resistance
CF3M (316L)	Low Carbon Stainless Steel 18% Cr, 10% Ni, 2% Mo	A351 Grade CF3M	-196 to 815	High and low temperature corrosion resistance
CF3 (304L)	Low Carbon Stainless Steel 18% Cr, 10% Ni	A351 Grade CF3	-196 to 815	Cryogenic service is also available upon request
CN7M Alloy20	Stainless Steel 19% Cr, 29% Ni	A351 Grade CN7M	-196 to 425	Corrosion resistance

Trim Material Chart

Trim Abbreviation	Stem	Disk/ Plug/ Ball Faces	Seat Faces	Recommended for:
С	13Cr	13Cr	13Cr	Oil and oil vapor services for temperature to 1000°F and for most corrosive and unrefined oils regardless of temperature.
S304	18 Cr-8Ni	18 Cr-8Ni	18 Cr-8Ni	Corrosive fluids and temperature from 150°F to 1100°F.
C/HF	13Cr	67 Co-28 Cr-4W	67 Co-28 Cr-4W	Steam, water, gas, and other fluids above 850°F to 1100°F, the preceding oil and oil vapors in sever service (dirty fluid or frequent cycling) from -20°F to 110°F.
C/Seat HF	13Cr	13Cr	67 Co-28 Cr-4W	Steam, water, gas, and other relatively non-corrosive fluids in general up to 850°F, oil and oil vapor up to 1100°F.
М	NiCu	NiCu	NiCu	Sever corrosive service, especially sea water, up to 850°F.
S316	18Cr-10Ni-2Mo	18Cr-10Ni-2Mo	18Cr-10Ni-2Mo	Corrosive fluids and temperature from 150°F to 1500°F.
M/Seat HF	NiCu	NiCu	67 Co-28 Cr-4W	
S316/Seat HF	18Cr-10Ni-2Mo	18Cr-10Ni-2Mo	67 Co-28 Cr-4W	Moderately corrosive fluids (including oil) up to 850°F.
S316/HF	18Cr-10Ni-2Mo	67 Co-28 Cr-4W	67 Co-28 Cr-4W	
M/HF	NiCu	67 Co-28 Cr-4W	67 Co-28 Cr-4W	
НВ	NiMo	NiMo	NiMo	The Hastelloy B alloys have low chromium and high (28%) molybdenum contents. Here the chromium level is too low permit the formation of a protective chromium oxide film, so that these materials are not corrosion resistant in oxidizing environments. However, the presence of molybdenum provides them with superior corrosion resistance in hydrochloric acid and very good resistance to many non- oxidizing acids and most organic as well as non-oxidizing salts.
C/M	13Cr	NiCu	NiCu	

Bolting Materials

ASTM Specification	Bolting is always of alloy steel			
	ASTM A193 Grade B7 bolting material is a chromium-molybdenum alloy steel with a minimum tensile strength of 125000 psi			
	for sizes up to 2 ½ inch diameter. It retains its strength and resist creep at elevated temperatures. The quench and draw heat			
A193 Gr. B7	treatment give a dense, uniform, fine grain; and high physical properties. These bolts are filled with ASTM A194 Gr. 2H			
	hardened medium carbon steel nut with a hardness of 248 to 352 BHN. These nuts are capable of developing the full strength of			
	the bolts. This alloy steel bolting is used for body-bonnet joints of carbon and low alloy steel body valves.			
Other available Body-Bonnet Bolting Materials				
	ASTM A 193 Gr. B8 bolting material is a chromium nickel alloy steel with a minimum tensile strength of 125000 psi for sizes			
A193 Gr. B8	up to ³ / ₄ inch diameter. Corrosion resistance of this steel especially in acidic environment is very good. These bolts are fitted			
	with ASTM 194 Gr.8. This alloy steel is used for body-bonnet joints of stainless-steel body valves. (On request)			
A 220 Cr. I 7	These bolts are fitted with ASTM A194 Gr.4. This alloy steel bolting is used for body-bonnet joints of carbon steel and suitable			
A320 01. L7	for low temperature service down to -50°F.			
	Alloy ASTM A193 Grade B16 is bolting specification for high temperature service. It is a heat-treated Chromium-			
A193-B16	Molybdenum- Vanadium steel. The specification calls for minimum strength and maximum hardness levels. It is considered to			
	be most suitable for bolts used at temperatures below 450°C			

Optional Flange Gasket Materials

Depending on the service conditions, various materials are available optionally for bonnet cover flange gasket.

Gasket Materials			
Soft iron gasket			
Spiral wound metal, graphite filled			
Ring joint metal			
Corrugated metal			
Flexible graphite (grafoil*)			
Virgin PTFE			
Glass filled PTFE			

*Grafoil is a registered trademark of Union Caride Corp.

Optional Gland Packing Materials

Depending on the service conditions, various materials are available optionally for gland packing.

Packing Materials	Service conditions
PTFE impregnated asbestos	232°C corrosion resistant
Inconel wire asbestos	650°C heat resistance
Virgin PTFE	232°C corrosion resistant
Graphite asbestos	343°C corrosion resistant
Flexible graphite (grafoil)	815°C heat and corrosion resistant

TUV NORD

Head Office: 2ndFloor, No.5 IN kraay St., Shama Tabriz, St., Mirolamad Bivd., Tohran, Fari, Postal Coop: 1013014615

Tol. +58(21) 22225845, 22260315 +38(21) 22274928-30 Fax: -98(21) 22279440

factory.

Π

r

Estegnial Bivel, Banaresten Bivd., Shams Abad Industrial Zone,Tehran I ran. Tale (199(21) 56901280-81

www.parspangan.com sales@parspangan.com

